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Multivector Dirac Equation and Z,-Gradings
of Clifford Algebras
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Received

We generalize certain aspects of Hestenes’s approach to Dirac theory to obtain multivec-
tor Dirac equations associated to a large class of representations of the gamma matrices.
This is done by replacing the usual even/odd decomposition of the space-time algebra
with more generali;-gradings. Some examples are given and the chiral case, which is
not addressed by the usual approach, is considered in detail. A Lagrangian formulation
is briefly discussed. A relationship between this work and certain quaternionic models
of the (usual) quantum mechanics is obtained. Finally, we discuss under what conditions
the Hestenes’s form can be recovered and we suggest a geometrical interpretation for
the corresponding situation.

KEY WORDS: Diractheory; Dirac—Hestenes equation; Clifford algeb?asgrading;
spinors.

1. INTRODUCTION

As soon as Dirac proposed the equation bearing his name, alternative multi-
vector formulations of it have been proposed with either physical or mathematical
motivations. As examples, one can mention the works of lvanenko Fock, Landav,
Proca, Eddington, Scimberg, Kihler, and Hestenes. In general, these approaches
seek a better understanding of the geometric foundations underlying both the Dirac
theory and the concept of spinor fields, besides new applications. For example, in
the context of the Dirac—#tiler equation, spinor fields are represented by differen-
tial forms. Then, the well-known duality between these objects and elements from
algebraic topology leads to a straightforward lattice approximation for fermion
fields (Becher and Joos, 1982; Rabin, 1982).
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On the other hand, in the Hestenes approach, extensive use of the space-
time algebra (the real Clifford algebra of space-tiig 3(R)) is made to give
spinors a geometrical interpretation. In this context, the spinds an element
of the usual even paﬂ!lzg(R) of that algebra (see later), and this leads to an
elegant canonical decomposition fér, which generalizes the polar decompo-
sition of complex numbers. Also, the spinor acquires operatorial attributes: its
action on the basis multivectoss,,...,, of the observer’s reference frane, }
yields the observables of the theory. For instance, the current dgnsity*e,
and the magnetization density = M"’e,, are given byj = Vep¥ andM =
= Wen WV (with h = ¢ = 1), where ()" is the reversion operation (see later). More-
over, ¥ belongs to the same algebra as the observables of the theory, i.e., the
Clifford algebra unifies, in a certain sense, the concepts of state and operator.
The corresponding multivector Dirac equation obtained in this context is the so-
called Dirac—Hestenes equation (Hestenes, 1967, 1996;; = mW e, where
d = e*9,. Besides providing an elegant formulation of Dirac theory, such an ap-
proach leads to some computational advantages @&all, 1996). Nevertheless,
it is our opinion that it has not been fully explored, as we intend to show in the
following.

As we review in the next section, the Hestenes’s formulation can be obtained
from the usual one by using a particular isomorphjamcl; 3(C) - M(4, C),
whereM (4, C) is the algebra of 4« 4 complex matrices. Given a reference frame
{e,.} (which corresponds to an observer) in Minkowski sgeesuch isomorphism
is given by psi(e,) = yjt, where{yj‘} are the gamma matrices in the standard
representation. As it is well known, the Dirac—Hestenes equation is independent
of {e, }, for another choic¢e, } must be related to the old one 8y = U eMlJ , With
U e Spin, (1, 3),givingdw'e,; = m¥'ey, whered’ = wU (Hestenes, 1995). On
the other hand, in the usual matrix formulation of the Dirac theory, we have a
complete freedom of choice for the representation in which the gamma matrices
are. As the underlying algebra is simple, it turns out that all such choices are
given by an internal transformation of the fonSm,f‘S*l, whereS is an arbitrary
invertible matrix. Restricting ourselves to transformations wigeiunitary, we
have (Messiah, 1961)

Yl v =SyssTh
[¥) = S|¥).

By varying S we have the standard, chiral, Majorana, or any other representa-
tion. Let us fix a reference frami@,} corresponding to a given observer. Also,
let us associate to each sufgh,} a new isomorphism : Cl 3(C) — M(4, C),
defined by

1)

,O(e/,,) = Yu-
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We can easily transfer the arbitrarinesg;n} to an arbitrariness in the choice of
theons {e,} (see sec. 1.1): by definirg:= 0s-(S) € Cl1.3(C), we havep(e,) =
Y =SySS™! = Sps(€,)S ™ = psi(S€. S ) = ps(€,). Thus, to see the effect of
an arbitrary{y, }, we can alternatively fix the representatiorand vary theo~s
{e.} by e, — S, S, with Se Clq3(C). The unitarity ofS has the following
counterpart irt. Let us induce ad-dependent) Hermitian conjugationGiy 3(C)
by St = p71(S") = p~H(p(9)T). ThenS1 =St & S = S

Note that the Hestenes’s formulationnist invariantunder the above trans-
formation fore,, i.e. undef

e, — € =SeSH, @

Ui W =wsh
Indeed, for arbitrans, ¥’ no longer belongs to the even part of the algebra and,
for S¢ Spin (1, 3),e, is not even a 1-vector. Hence, we see that this “difficulty”
arises because we are restricted to a fixegtading of the underlying vector space
structure of’l ; 3(R) = @k Ax(RY3), the one in which the tangent vectors of space-
time are elements of 1 (R13)  Cl; 5(R). This is certainly the most natural choice
but not the unigue one, as it has already been remarked by Fauser (2001), “One
knows that differenZ,-gradings can produce quite different spinor modules. This
fact renders the unquestioned multivector structure as a peculiar one. A careful
study of the representation theory and their dependence on gradings in such cases
is required.”

In the following, we circumvent this difficulty by allowing more general
Z,-gradingsClo @ Cl; to the space-time algebra, i.e., by generalizing its usual
decomposition in terms of even/odd parts. Then, the spinor space is given by
the generalized even pafty, of Cl1 3(R), which can be isomorphic to either
M(2,C)orH & H (as algebras). As aresult, we obtain multivector Dirac equations
corresponding to a large class of representations of the gamma matrices. We work
outthe standard, Majorana, and chiral cases, giving special attention to the last one.
In this context, a neat characterization for chirality in terms of the even/odd parts of
the new spinor space is given. A Lagrangian formulation is also briefly discussed.

6 Although we haveransferredan arbitrariness itV (4, C) to an arbitrariness il 1 3(C), we stress
that the transformations (1) and (2) are not the counterparts of each other. In fact, every operation
acting on the left side ofyr) in the matrix case has the well-defined analogue in the operatorial
approach:

l¥) = vv) —> ¥ — e, Ve,
) = ilY) > ¥ — Wey, i=+-1

On the other hand, the transformatién— W S-1, with Sacting from the right, has no analogue in
the matrix case. This kind of transformations has already been considered by a number of authors
(Chisholm and Farwell, 1999; Hestenes, 1982), although in different contexts.
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As a by-product, we show that Rotelli’s quaternionic formulation of the
(usual) quantum mechanics (Rotelli, 1989) can be derived from our approach. This
is done by giving a natural derivation for the complex projection of his scalar prod-
uct’ Also, we show that the multivector Dirac equations discussed here provide
a natural way to obtain gamma matrix representations in terms of the enhanced
H-general linear groui L(2, H) - H* (Harvey, 1990), which comprises matrix
multiplication from the left and scalar multiplication from the right, as in de Leo
(2001).

We stress that the alternatig-gradings discussed earlier are defined without
disturbing the aforementioned multivector struct@eA (R>3) of Cl1 3(R). In
other words, one can still interpret elementsAgf as scalars, elements af; as
tangent vectors of space-time, and so on. On the other hand, the usual Hestenes’s
form of the Dirac equation can be recovered if we allow arbitZagradings for the
underlying vector space structure®f s(R) (i.e. arbitrary multivector structures),
as we show in Section 3. Such alternative gradings have already been considered in
the literature, although in a different context (see Fauser and Ablamowicz (2000)
for an excellent discussion on this issue). In our case, we argue that this situation
can be interpreted as if different representatipng determine different slices
of the space-time algeb@; 3(R), each of them corresponding to a copy of the
Minkowski spaceéVl. This points to a connection between the present work and
Pezzaglia’'s polydimensional physics program (Pezzaglia, 1999). Finally, in the
Appendix, we elaborate on the spinor maps used in the main text.

In the process of writing this paper, we became aware that the construction
of the spinor spacé€ly employed by us is reminiscent of a general method of
representation of Clifford algebras introduced by Dimakis (1989). In that paper,
the author introduces representations of arbitrary Clifford algebras on subspaces
obtained by successivé,-gradings of the original algebra. As a result, these
subspaces are always real Clifford algebras by themselveSl F¢R), the spinor
spaces obtained by Dimakis are the same as ourshisus not the general rule.

In fact, our approach leads to more general spinor spaces, which can be classified
(Mosnaet al., in preparation) by

Clo = Clpyq ® C'ﬁ—po,q—qo’
where po(qo) is the number of independent e¥etrvectors squaring te-1 (—1)
(note thatforpy = gp = 0, this expression reducesily = ClI J‘;’q(R), as expected).
As an example, for the Clifford algebés o(R), which is related to Pauli theory

71t is important to note that such a quaternionic formulation (Rotelli, 1989) (see also de Leo, 2001)
bears no relation to the much more general program due to Finkedstain(1962), Emch (1963),
and Adler (1995), where a truly quaternionic valued scalar product is used instead of a complex
valued one. Itis not a surprise then that the quaternionic formulation we refer to in the main text can
be actually derived instead of being postulated.

80f course, in this context even means belonginglip
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in the same way a6l 3(R) is related to Dirac theory, our method leads to spinor
spacesisomorphic i, M(2, R), andC & C. AsC & Cis notareal Clifford alge-

bra, this case is not given by Dimakis’s method. Anyway, the subject of the present
paper is different from Dimakis (1989), as we are mainly interested in the general
multivector Dirac equations outlined earlier, as well as in their consequences. A
more abstract discussion on alternat&egradings of Clifford algebras (as well

as some applications) will be considered in a separate paper (Masaa in
preperation).

1.1. Algebraic Preliminaries and Notation

We start by establishing some notation. We say that a vector Spase
graded by an Abelian grou@ if V is expressible as a direct swh= @;V, of
subspaces labelled by elements G (Benn and Tucker, 1987). Here we consider
only the cases whe@ is given byZ or Z,. In this case, the elements 9f are
called homogeneous of degreand we define degj =i if v € V;. We say that
an algebrad is graded byG if (a) the subjacent vector space . dfis a G-graded
vector space and (b) the algebra product satisfiesategé deg@) + degp).

As usual, lefRP? be the model of an-dimensional real vector space endowed
with a nondegenerate symmetric megiof signature p, q), wheren = p + q.
The Grassmann algebra o9 will be denoted byA (RPY) = @p_oAx(RP9).

We note thatA(RP9) is an example of &-graded algebra (under the exterior
productA). We denote the projection of a multivectar=ag +a; + - - - + ap,
with a, € Ax(RP9), on its p-vector part by(a), := a,. The parity operator-{

is defined as the algebra automorphism generated by the exprgssierv on
vectorsv € RP9. The reversion-{~ is the algebra anti-automorphism generated
by the expressiow = v on vectorsv € R, It follows thata = (—1)ka and

a = (—1)aif a € A(RY), where n] denotes the integer partof. Givena =

Up A---Augandb = vy A -+ Avpwithui, v € RP9, the expressiong(a, b) =
det@(u;, vj)), if k =1, andg(a, b) = 0, if k # |, extendg to A(RP9). Also, the
left contraction. on the Grassmann algebra is definedyfg.b, ¢) = g(b, & A ¢)
for a, b, c € A(RPY).

The Clifford product between avectore RP% and amultivectoain A(RP9)
is given byva = v A a + v_a. This is extended by linearity and associativity to all
of A(RP9). The resulting algebra is the so-called Clifford algefirgq(R). Note
thatCl ; 4(R) is aZ-graded vector space (for it is linear isomorphicA¢R ™)),
but it is not aZ-graded algebra as, for example, the Clifford product between two
1-vectorsis a sum of elements of degrees 0 and 2. Nevertheless, there are (infinite)
Z,-gradings which are compatible with the Clifford product structure. For instance,
the usual,-grading ofCl ; 4(R) is given byCl} (R) ® CI; ,(R) whereCl | (R) =
Bk everAk(RPY) andCl pq(R) = @« oddAk(RP9). We denote the complexification
of Clp,q(R) by Cl4(C) = Clpq(R) ® C (of course, all theCl , 4(C) with fixed
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p + q are isomorphic as complex algebras). The parity operator and the reversion
extend naturally to the complexified case. The complex conjugatichig(C)
will be denoted by -{*.

In terms of the Clifford product, we hawga, b) = (ab)q, for a, b arbitrary
multivectorsirCl p 4(R). Forl-vectorsthis reducesto@(x, y) = Xy + yx, X,y €
RP9, butthis expression does not hold for arbitrary multivectors (except for particu-
lar cases). Given an orthonormal basig of R™9, we have of coursgej + eje =
20i;, wheregi; = g(e, ;). When a subsdfE; } of Cl ; 4(R), not necessarily com-
posed of vectorim RP9, satisfy the analogous propefyE; + E; E; = 2g;;, we
say that{ E;} is anons (for orthonormal set). As we discussed earlier, in this case
the expressiorE; E; + E; E; does not necessarily represent the scalar product
o(Ei, E;) betweenE; andE; (see also Section 3). tfis an invertible element of
Cl p,q(R), the definitionE; = cqc™! gives an example of ans.

2. MULTIVECTOR DIRAC EQUATIONS

Let us review one particular way in which Hestenes’s approach to Dirac
theory emerges from the matricial one. We will only consider a free particle (the
introduction of a vector potential can be done by introducing the usual covariant
derivatived,, — 9, +ieA,). Inthis case, the Dirac equation in its traditional form
(Bjorken and Drell, 1964) is given by

Py 0, lv) = miy). @)

Here, |v) = (1 Y2 ¥3 ¥4)t denotes a column vector i@* and{y,} is a set of
gamma matrices in some representation. These column spinors can be included in
M(4,C) (4 x 4 complex matrices) by considering, for instance

1 0 0 O 1 000
|v200 0] oo oo

W) = v 0 0 0 =y)P, whereb=1| = o . @
Ys 0 0 O 0 00O

(of course, we could have chosen any column for such inclusion). Thergfgre,
can be assumed to live in the minimal left ideal(4, C)P.

As it is well known, M(4, C) is (noncanonically) isomorphic t6l1 3(C),
the complexified Clifford algebra of the space-time. peCl; 3(C) — M(4,C)
be such an arbitrary but fixed isomorphism. Then= p~%(P) is a primitive
idempotent and the corresponding minimal left idéals(C) P can be considered
as the space of spinors. Elements belonging to this ideal are cdtietiraic
spinors Note that westartedfrom a representatiop of Cl1 3(C) and then we
calculated P= p~1(P), which in turn determined the space of algebraic spinors
Cl1 3(C)P. In the next subsection we specialize to the Hestenes’s choigediod
after that we generalize it.
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In the following, let{e, } be an arbitrary but fixed reference frame correspond-
ing to a given observer. In other words, we are considering the physics from the
viewpoint of an arbitrary but fixed observer.

2.1. The Dirac—Hestenes Equation
The Hestenes’s choice fer, which we denote byy, is given by
psi(€.) = v5, 5)

where y:t are the Dirac matrices in th&tandard representatiofitzykson and
Zuber, 1980):

pst(eo)=yét=<(|) _Ol), Pst(ex)z)/kSt=<(g< _gk), k=1,2,3,
(6)

(ok are the Pauli matrices). It follows th& = Py = (1 + e)3(1+ie). By
using the fact thaiPs; = Psr1, Hestenes then eliminates the need for complex
numbers in the Dirac equation, which can now be written in a minimal left ideal
in Cl1 3(R) (real algebra):

1
yho, Pey =md, P e Cl 1'3(R)§(1+ €0).

Separation of this equation in its even and odd parts with respect to the main
involution (-) leads directly to the Dirac—Hestenes equation:

IWey = mbe, W eClyyR). @)

whered = e*9du. As we have already said in the Introduction, the spifrdnas
operatorial attributes, acting on the multivectes... , to yield the observables
of the theory. For that reason, we say thais anoperator spinor Also, there is
a canonical decomposition fdr in the form

U = @eé €0123 R,

wherep and g are real numbers arid is an element o6pin, (1, 3), the double
cover of the restricted Lorentz transformations. For examplects oney as a
Lorentz transformation together with a probability density (Hestenes, 1995) to
yield the physical currenj = Wey = gRe, R. The parametep only gives a
nontrivial effect whenV acts on an even multivector.

9 A more precise notation fos would have to mention the frame, }, asp is observer dependent
(see remark at the end of the previous section).
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2.2. Generalizing Hestenes'’s Approach

The Hestenes’s approach makes direct use of the standard representation of
the gamma matrices. Let us now derive operatorial versions of the Dirac equation
corresponding to a larger class of representations. We detail the calculations for the
sake of completeness and clarity, but we stress that we are just following the steps
of Lounesto (1996), with the introduction of appropriate modifications coming
from this more general setting.

An arbitrary representatiofy,} for the gamma matrices is related to the
standard one by an internal transformation of the feya= Syjts—l. With unitary
matrices, we have the corresponding transformation— S|vr) for the column
spinors. Let us associate to each sygh} a new isomorphisnp : Cl1 3(C)

M(4, C), defined by (cf (5))

p(eu) = Yu-
As we advanced in the Introduction, we can transfer the arbitrariness in the choice
of {y,} to an arbitrariness in the choice of thes {e,}: definingS := ps_tl(S) €
Cl1,3(C), we havep(e,) = v, = ps(€),), Wheree, = Se, S L. Thus, the effect of
an arbitrary{y,} is emulated by varying thexs {e,} by e, — Se,S™%, with
S e Cly 5(C). By definingads: Cly 3(C) — Cl1,3(C), ads(a) = SaS?, we have
then

0 = psto ads. 8)
Let us now apply~? to (3) with |v) in the form (4). We then have
ie, 0"y = myr, 9

wherey = p~(|y)). Remember from (4) thdiy) = |)P and thusy = P,
with P = p~1(P). Hence, is an algebraic spinor belonging to the minimal left
ideal determined by this ne®. It follows from (8) thatP = S 1P4S= %(1 +
u)%(l +i0), whereu = S 'ggSands = S'e;,Sare commuting elements such
thatu? = 1 ando? = —1. In generalu ando don’t have to be real but, to the best
of our knowledge, every set of gamma matrices considered in physics satisfies this
condition®®

So, for the sake of simplicity, we assume that the idempaoeat p~1(P)
can always be written as

1 1 i
P=-14+u=11+i0), (20)
2 2
whereu ando are real commuting elements such that= 1,02 = —1.

100f course, this does not mean that the mé8iix (1) is real. Indeedpst: Cl1,3(C) = C @ Cl1,3(R) —
M(4,C) is such thafsi(i ® @) = ipst(1 ® a) for a € Cl1 3(R), but pst(1 ® @) is not necessarily a
real matrix (as it is the case ef andyzs‘, for instance).
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Let us define four mutually annihilating idempotents (note that P):

P, = %(1+ u)%(1+ io), P= %(1+ u)%(l— io),

1 1 1 1 (11)
P; = é(1— u)§(1+ io), Ps= 5(1— u)é(l— io).
AsiP = —Po, we have from (9)
Yo +my =0. (12)

Then, because of the fact thet, u, ando are real, we havgg = ¢ P, = ¢* =
VP = Re(w)%(l + u) = Re()). Thus, the real part af belongs to the minimal
leftidealCl 1,3(IR<)%(1 +u)inClq 3(R),i.e.,itis an algebraic spinor &1 3(R) (real
algebra). Following Lounesto, we define the mother spibet 4 Re@/). Taking
the real part of (12),

1
900 +mP =0, e Cly(R)5(1+ ). (13)

This is the Dirac equation written in terms of real algebraic spinod in(R).
Following Hestenes’s approach, we now obtain an operatorial version of the above
equation, but without restricting ourselves to his particular choicgypf (or,
equivalently, ofP).

In Subsection 2.1, the passage from algebraic spinors to operator spinors
was made by taking the usual even/ddgigradingCli 3(R) = Cl‘lfgea Cly 5 of
Cl1 3(R) and then projecting the analogue of (13¢I¢3(R). This was easily done
as the analogue af (i.e. e) was odd and the analogue &f(i.e. e;) was even.
Nevertheless, these conditions no longer hold in the more general setting of this
subsection. For instance, in Example 2 below (which is related to the Majorana
representation), we have= ey, which isevenwith respect tcl I3 ®Cly s

So, to consider the spinor as an operatorial object, we will define a convenient
Z,-gradingCl ;1 3(R) = Clo @ Cl; such thau is oddando is evenwith respect to
this grading. More precisely, we demand that the subspé@leeand(l; are such
that

CloClg C Clg, ClgCly CCl1, CliClg S Clq, Cl1Cl1 C Cly,
and
uecCly, oellgtt
Note thatCl is then a subalgebra 6f  3(R).
HAasP =31+ uil+io)= (1 +u)3(L+iuc), we canredefine ass’ = us. Asa’ € Clg <

o € Cl1, we see that the essential assumption aboistthat it has definite parity (with respect to
Clo & Cl1). As a matter of fact, even this assumption can be weakened at the expenses of simplicity.
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To eaclZ,-gradingCl 1 3(R) = Clo @ Cl1 there is a corresponding grading au-
tomorphismy suchthatl; = {a € Cl1 3(R): a(a) = (—1)a},i = 0, 1. We define
projectionsr; : Cl1 3(R) — Cl; by mi(a) = M i =0, 1. Note thatv is re-
lated toCl @ Cl; in exactly the same way agis related tcCl Ig(IR{) @ Cl1 5(R)
(see Introduction for notation).

We refer taCl g andCl; as thex-evenandwe-oddparts ofCl 1 3(R). In general,
ClpandCl, are of course different from the usual evém(g(R)) and odd(l 5(R))
parts ofCl 1 3(R). Or, in other words, in general we hawvalifferent from ¢)".

Now it is possible to obtain an operatorial version of (13) by a standard
procedure. Because of the fact that= d>1+7” andu € Cl4, itfollows that® = ®u
andmy(®) = mo(P)u. Separating (13) i-even andx-odd parts, we have

mo(0)WuUo + m1(0)¥o + mbu =0,
where
U = 719(®) = mo(4Ref))). (14)
By defining a “projected” Dirac operat(i)r acting onClg by 5(~) = mo(d)(-)u +
m1(9)(-), the above equation simplifies to
dWo +mu=0, W eCllg. (15)

This is the generalized operatorial version of the Dirac equation we were
looking for.

Example 1(Standard Representation). Starting with the gamma matrices in the
standard representatigp'}, onecalculates P= Pg; = 3(1 + €)3(1 + i€12), giv-

ingu =&y ando = e;o. We see thaey(er) is already odd (even) in the usual
Z-grading ofCl 1 3(R), so we can takély = Cl‘lfg(]R) andCl; = Cly 4(R). Also,

9 = 3. Then, (15) leads to

Ve +mig =0, W eCli4R),

which is the Dirac—Hestenes equation, as expected.

Example 2(Majorana Representation). If we start with the gamma matrices in
the Majorana representation (Itzykson and Zuber, 1980):

i 0 o i —io 0 i 0 o
mp__ 2 m_ 3 mj 2
VO _(02 0)’ yl _< 0 —iG3)' )/2 _<—Uz O)'

7/3 B 0 iU]_ '

adirect calculation yield® = Py = %(1+ ezo)%(1+ ie1),i.e.,u=egpando =
e1. The next step is to defineZa-grading such thadyg is «-odd ande; is a-even.
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There are plenty of them, but a convenient choice is given by

Clg Cly
0-vectors 1
1-vectors e, e, €3 €
2-vectors ey, €3,€31 €10, €20, €30
3-vectors €123 €012, €023, €031
4-vectors €123

where the columns give basis for the vector spatesndCl,.*? Note thatCl, =
C|o’3 and thus

Clo=HaeH (asreal algebras).

Hence, this algebra isot isomorphido the one in the Hestenes’s case, which was
given byCIfg(}R) = Cl3,0(R) = M(2,C) = Pauli algebra

It is important to note that not all vectoes arec«-odd in thisZ,-grading. As
70(8) = ad* andm1(d) = €d°, we haved(-) = 6.d%(-)ex + €d°(-). From (15),
the Dirac equation in this case is therefore

&0’V + 6.0 Weyg = mWeye;, W e Clo.
After right-multiplying by e, and noting thagy W ey = ¥, we finally have
%0 + gd“ve, =mue, Wellpg=Cloz=HeH.

Example 3(Chiral Representation). We now consider the chiral representation
pen(en) = y<", where (Itzykson and Zuber, 1980):

0 -l 0o -
IOCh(e()) =V(§h= <_| 0 )- ,Och(ex)=)/k0h= (Uk gk>, k= 11 213

A straightforward calculation then give® = P, = %(1 + 630)%(1 +ieq), i.e.,
U= egando = epo.

Before we derive the operatorial version of the Dirac equation for this case,
let us consider the chirality operator in this context. Remember that the chirality
operator acting on column spinors is given by Bjorken and Drell (1864)/)] =
ysl¥) = —iyo123 ). By applyingp—1, we have the corresponding expression for

12An analytic expression for the corresponding automorphism grading is, for instatge=
€1231€123.
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algebraic spinorsch[v] = iegio3 = €123 0 = €123 U0, for ¢ = yru. Thus
ch[v¥/] = ep123¥ €30€12 = —€p123Y €0123 = V. After applying the isomorphism (14)
between algebraic and operator spinors (which is the isomorphisgussed in
the Appendix), we haveh[¥] = 4mo(Re(/)), which is simply 4ro(Re()) =
W provided that the grading automorphisms ~andommute. As thes,'s have
definite ~parity and generatd; 3(R), this condition holds if and only if eacd),
has definitex-parity (of course, some of the,’'s can bex-odd and some of them
a-even). Thus, this condition is extremely easy to be fulfilled.
A convenient choice for th&,-grading here is given by

Clo Cly
0-vectors 1 (16)
1-vectors (= €1, &, €3
2-vectors  epo, €3, €31 €01, €02, €03
3-vectors  €p1, €p23, €n31 €123
4-vectors €123

Note thatu = e3p is «-0dd, o = ey» is «-even, and all of thee,’s have definite
a-parity. As discussed earlier, we then have

ch[v] = ¥, (17)

giving a particularly simple form for the chirality operator.
We now further decomposé in its usual ¢ -) even and £ -) odd parts
Clg := CloNCI3 5 It follows from (17) that

Cl$ = [space of right handed spinors],
Cly = [space of left handed spinors],

which gives a neat characterization of chirality for operator spinors.
Returning to the Dirac equation and proceeding as in Example 2, we obtain

e00°Wesp + 6 W = —mWeyper;, W e Clo.
After a little algebra, this gives
~0%Wey, + (e230" + €319% + €120°)¥ = mayW, W € Cly, (18)

where we used the fact theg commutes wittCl . This is the operatorial version
of the Dirac equation for this case. In the following section, we explore the above
expression further.
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2.3. Quaternionic Representations of the Gamma Matrices

The above form of the Dirac equation gives a natural way to obtain rep-
resentations of the gamma matrices in terms of the enhategeneral linear
groupG L(2, H) - H* (Harvey, 1990), which comprises both a quaternionic matrix
multiplication from the left and a quaternionic scalar multiplication from the right.

2.3.1. Chiral-Like Representation
Let us project (18) i€,

—3%W_ e1p + (e230" + €310° + €120°) W, = me@W_ inCl],
—3%W_ep — (230" + €319% + €120%)W_ = mey¥, inCl;.
After right-multiplying the second equation k&g and definingy := ¥, n 1=
W_gy (note thaty, n € Cl§), we have
—3%)ern + (230" + €310 + €120%) x = My,
—3%ne1, — (e230" + 3102 + €120%)n = my,

which are equations Withi(jlg,L = span {1, e1s, €3, €31}. This algebra is isomor-
phic toH through 1— 1,e3+> i, €31 — |, €12 — K, wherei, j, andk denote

the imaginary quaternionic units. To simplify the notation, {etii, i, = j, and

iz = k and lety andn be (by abuse of notation) the quaternions corresponding to
x andn by the above map. Then

—3%k +1018'x = my,
—3%k —ij0'n = my,

(note that these equations decouple in the limit> 0, as expected). In terms of

() e B2,
(e (o 3)() =G o)),

In the Appendix, we discuss in detail the relationship among the different def-
initions of spinors considered here, and we obtain expressions for the momentum
operator and scalar product in terms of operator spinors. From (24) and,,, it
follows that the momentum operator acting(@his given byp,.[(£)] = 8, (})k.

So, the above equation can be written as

(2 (5) 0 (7 9 (1)x=m(2)
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Let us definey,, : H? — H? by

X 0 1\ (x X 0 —i X
w(3)=(20)(5) ()-(0 @)(G)e o
wherel = 1, 2, 3. Note that

(i) v, comprises both a matrix multiplication from the left and a scalar
multiplication from the right, i.ey, € GL(2,H) - H*, | =1, 2, 3;
(i) ¥,y + 7Y, =200, Where the produet,,,, is given by composition;
(iii) [, Pv] = 0, for, commutes with right multiplication bk; and
(iv) bothp, and~y,are Hermitian operators (see below the expression of the
scalar product).

After substitutingy,, in the above equation, we find

(i) )

which is the Dirac equation i with aG L(2, H) - H*-chiral representation (19)
for the gamma matrices. This should be compared with de Leo (2001).

Let us denote quaternionic conjugation by a bar, i.e., giyeaq® + q'i,
we haveq = q° — g'ij. A straightforward calculation shows that the scalar prod-
uct (25) (see Appendix) between spinors becomes in this formalism:

(Y1l¥2) = proje (xaxz + n1n2), (20)

where (57() < ), i =1, 2, and prqgj’ projectsH into its complex subspace
C' = span ({1, —k} € H. In other wordsC’ is a complex subspace & with
imaginary unity/—1 given by—k. Note that, if we had chosen to inclugi¢) in
the fourth column ofM(4, C) (instead of (4)), then we would hawg—1 < k.
More generally, by redefining the above isomorphism betw@gnand H, we
could identify subspace8’ € H with imaginary unity/—1 corresponding tany
imaginary unit quaternion.

Observe that (20) is the quaternionic scalar product betvq;’éit)rand (i}‘z)
projected to a complex subspaCeC H. Therefore, we have just shown that in
this formalism one caderivethe ad hoc complex projection for the scalar product
in Rotelli (1989).

2.3.2. Standard-Like Representation

Another interesting decomposition @ff, can be given by noting that, in this
caselg is isomorphic toH & H (as real algebras). To see this, let us pick the
mutually annihilating central idempotenfs = %(1:& &) in Clo. Then we have
immediatelyClo = Clo f, @ Clo f_, where® denotes direct sum of algebras. Each
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factorCly f.. is easily seen to be isomorphicltbby the maCly fL — H, fi —
1,e3fi—i,e1fi], e2fy — K. As the subalgebrad o f are orthogonal (i.e.
ClofiClofy = 0), itis natural to defing :Clo — H & H by

s(er) = (11 0)1 %'(823 f+) = (|1 0)1 ‘i:(e31 f+) = (Jv 0)1 5(612f+) = (kv 0)1
§(f2)=(0,1), &(exsf ) =(0,i), &(eanf)=(0,]), &(er2f-)=1(0,K).

Or, in terms of the elements in (16),

§)=@11), &(e)=(1,-1),
g(e23) = (I! I)! g(e&l) = (J! J)! S(elZ) = (k, k)!
5(9023) = (I! _i)v g(&ﬁl) = (J! _J)! 5(9012) = (kv _k)

We note in passing that giveh € Clo, with £(¥) = (01, g2), the reversion~and
the A -parity are given ifH @ H by &(¥) = (0, ou) and&(¥) = (Gu, o).

Let us pause to consider the positive/negative energy states. For the sake of
simplicity, let us consider the electron at rest. Then, the energy operator on col-
umn spinors is given b¥[|y¥)] = myp|y). This induces€[¥] = meyy on al-
gebraic spinors. By applying the isomorphisand (23) (see Appendix), we have
E[Y] = meW for operator spinors. This gives ug[(qi, G2)] = Mé(eW) =
m(1, —1)(@1, g2) = (M, —Map) at the level ofH & H. Thus, states of the form
(g, 0) and (0g) can be thought of as positive and negative energy spinors re-
spectively. Therefore, it is not a surprise that a standard-Gkg2, H) - H*-
representation for the gamma matrices can be obtained in this context.

Applying & to (18),

—3%(qu, G2)(K, K) + (ir, 1)2' (G2, Gu) = M(L, —1)(0, ).
Or, in terms of(g;) e H?,

e (B)ea (D 6)(X)=m(s%) ().

We have agaip,, [(g;)] = —3,(g)k. So,

# (5 %) ()40 (S 8) (7 )x=m().
() =n(G)

wherey,, :H* — H? 1 =0, 1, 2, 3 are now defined by

(&)= (o) (&) »(3)=(50) ()«

or
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wherel = 1, 2, 3. This gives anothé& L (2, H) - H*-representation of the gamma
matrices (now standard-like), again to be compared with de Leo (2001).

2.4. Lagrangian Formulation

We now briefly discuss a Lagrangian formulation for the multivector Dirac
equations considered here. In terms of column spinors, the usual Lagrangian for
the Dirac theory is given byC = 5((¥/1y"d,lv) — 0, (W ly"|¥)) — m(yr | ¥).

By employing the spinor maps from the Appendix, we obtain the corresponding
expression for operator spinors:

L =—(Pi(W)oko)o — mIWuk)o, W e Cly,

where we defingy = ugy if ey € Clgandéy = & if & € Cl; (note thak is always
«-0dd). The equations of motion derived from the above Lagrangian are indeed
the multivector Dirac equation (15), as expected.

It is important to note that this derivation owes much of its simplicity to the
fact that we had already identified the spinor sp@legwhich in turn determines
the modified Dirac operat(f}r) in Section 2.2.

3. BACK TO HESTENES'S FORM

In the previous section, we have obtained multivector Dirac equations corre-
sponding to different representations of the gamma matrices. These equations and
the spinor spaces associated to them are, in general, distinct from those obtained
in the context of the Dirac—Hestenes equation. Now we show that, by allowing ar-
bitrary Z-gradings for thevector spacstructure of’l 1 3(R), we can always obtain
a multivector equation similar to the Dirac—Hestenes one, and with spinor space
isomorphic to the Pauli algebra. By an arbitrdrgrading we mean one that is not
necessarily in the forngl 3(R) = &¢_oAx(M), whereM = RY3 s the tangent
space of space-time at a given point.

Let {e,} be an orthonormal basis &fl corresponding to some observer’s
reference frame. In Section 2.2, we showed that to representdfiph®f the
gamma matrices there correspond different operatorial versions of the Dirac equa-
tion. To do that, we first defined the,-dependent representatipn Cl 1 3(C) —
M(4,C), p(e,) = yu, and then transferred the Dirac equation to the ideal
Cl1,3(C)P, whereP = p~1(P) andP is given by (4). After that we showed that
by taking a convenierit,-gradingCl 3(R) = Clo & Cl1 we could obtain a corre-
sponding operatorial version of the Dirac equation in the algély.@As we have
already seenP can be written as

1 1 .
P= 2(1+ u)2(1+ io),
whereu = S lgySando = S 1e;,S.
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Let {E,} be defined byE, = S~'e,S. Of course,E,E, + E,E, = 29,,,
i.e.,{E,} is still anons. However, in general, the elemerig are not vectorsn
M. As a matter of factE,, can even have a nonzero imaginary part for certain
choices ofS. Let us define the reversion)® and parity ()P operatorgelative to
theons {E,} by (E,)R = E,, extended t&l 3(C) as an anti-automorphism, and
(E,)P = —E,, extended t@l; 5(C) as an automorphism. Of courseRand ()"
define aZ-grading for the underlying vector space structur€lafs(R) by

4
Cl15(C) = @ Cu,
k=0

whereCqy = C (scalars)C; = {a:a” = —aandaR =a},C, = {a:a” =aand
aR = —a},C3 = {a:aP = —aanda® = —a}, andC, = span.{Eo123}. Note that
C, is the orthogonal space @, inside{a:aP = aandaR = a}.

Let p:Cl1,3(C) — M(4,C) be the isomorphism defined y(E,) = y:t.
Proceeding as in Section 2.2 but now with= (1 + Eq)3(1+iEy), i.e., with
u = Ep ando = Ej,, we obtain the analogue of (13),

DPE;; +md =0,

whered := 4 Re(/) and® := E, 3" (note tha® is not the usual Dirac operatdy
for E, isnotavectoriMl, u = 0, 1, 2, 3). The abov&-grading for the underlying
vector space structuref Cl; 3(R) induces &.,-grading for thealgebra structure
of Cl 1’3(R) by

CliaR) = Clo@® Cly,

where Clg := ®keverlCk and Cly = Dk 0ddCk-_ With respect to the notation in
Section 2.2, we can take now= ()P andd = D, resulting in the following
operatorial form of the Dirac equation:

DU E21 = mw Eo, (21)

with & € Clg = Co @ C, & C4 and® = E, 0*. We see that (21) has the form of
the Dirac—Hestenes equation but with the difference that every quantity here is
conjugated to the corresponding Hestenes quantity by a similarity transformation.
For instance, the algebra of operator spinod is= S™1CI ;33, and thus it is al-
ways isomorphic t«i’lf3 = M(2,C) = [Pauli algebra]. This should be compared
with our former examples.

3Note that the scalar product between elements of@Ns is given byg(E,, E,) = (E,LEU)O =
(56,515 16,90 = (€,(S5) e, SS)0. When Se Spin, (1, 3) the mape, — S 'e,S is an
isometry inR%>3 and S§= 1 (Lounesto, 1996). Therefore, in this case we he(g,, E,) =
g(e., &) = guv. However, in the more general setting of this section, this is false: we do have
E.E, + E,E, = 2g,,, butin generakE, ¢ R“-3andg(E,, E,) # Guv-
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As a consequence, the spindire Clg still has a polar decompositiosl =
ﬁeg FozR = S71(/0e™=R')S, where R (and not R) covers a restricted
Lorentz transformation of the space-time. Also, we should not interpret the quan-
tity U EqW as the current density as in the Hestenes approach. Now this current is
givenbyj = j e, = (j*E,)S

Note that theons {E,, } does span a four-dimensional real vector spAce=
spar{Eo, E1, E2, E3}, on which we can define the metriux, y) = %(xy+
yX), X,y € W (in this expression, the producky andyx are just the Clifford
products inherited frongl; 3(C)). As a resultW is isometric toM and therefore
Clc(W) Z Cl41 3(C). However, the real subspa¥é is a combination of multivec-
tors of different gradeof M. Observe also that the polar decomposition for
above givest = \/Q_e% FosR with R € Spin, (W) = {a:a” = aanda®a = 1}.
Of course Spin_ (W) is the double cover of the restricted isometry gr&q. (W)
of WandSQ, (W) = El (as groups). NevertheleséfF andS O, (W) have very
different geometrical interpretations. In particular, the symmetry group of space-
time isﬁl, and notSQ, (W).

Let us now consider only representations of the gamma matrices which give
realE,** u =0, 1, 2, 3. In this casay is a vector subspace 6f; 3(R) isomet-
ric to M andClg(W) = Cl1 3(R) (note that the standard representation leads to
the strict equalitylv = M). Therefore, as we have advanced in the Introduction,
different representatior{y,, } determine different sliced/ of the space-time alge-
braCl 1 3(R), each of them corresponding to a copyMf Thus, we are naturally
led to speculate about a possible connection between this work and Pezzaglia’s
polydimensional physics program (Pezzaglia, 1999).

APPENDIX: SPINOR MAPS

In this section, we elaborate on the correspondence between algebraic and
operator spinors. Let Cl1 3(C)P — Clobe the map (14) relating algebraic spinors
to operator, spinorsi.a{y) = ¥ = 4mg(Re)). AlthoughCl is areal algebra, it
has a natural complex structére) : & — —Wo-. It follows that, with this complex
structure; is acomplex isomorphisnTo prove that, let us first exhibit an inverse
for ..
As v =y Py (cf (11)), we have 2 Re&) = (Y + ¥*) = v P1 + ¢v*Ps.
As ue(Cl; and o €Clg, we have a(P;)=P; and «(P,) = P;. Thus
U = 4no(Re())) = v PL+ v* Py + a(y¥) Ps + a(y*) Ps. After right-multiplying
by P1, we have (remember thgt =  P;)

v = VP, (22)

14This is equivalent to our assumption theando are real in (10).
15 complex structure on a vector spadds an endomorphismd onV such thatl2 = —1v.
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and henca1(¥) = WP;. Obviously,:? preserves sums. Also;1(J(¥)) =
Y (~WVo) = —Wo P, =iWP, =i }(¥) and thus:~! and: are complex iso-
morphisms, as claimed.

Let us now consider the operatorial version for the action of a matiix
[v). Applying the isomorphism of the last section and definily= p~1(A), we
haveA|y) — Ay at the algebraic spinorial level. After decomposi its real
and complex part®\ = Ag +iA,, we haveAy = Agy — Ajyo. To go to the
operatorial level, we apply the abové obtain

. AR\I»’, if AR € C'o,
L(ARw) - { ArVu, if Ar € C'l,

with analogous expressions féy;. Indeed, if Ag € Clo, thenmo(Re(ArY)) =
mo(Ar Re@)) = Armo(Re@)). Similarly, if Ag € Clq, thenmo(Ar Re()) = mo
(Ar Re@ru)) = mo(Ar Re@)u) = Armo(Re@/))u, where we used the fact that
¥ =yu.

In a more abstract level, we can use (23) to consgitigas the representation
space of’l; 3(R). More precisely, one can define a representatiarC| 1 3(R) —
Aut(Clg) asfollows. Giverp € Cl1 3(R) and¥ € Clg, we decompose = ¢o + ¢1
with ¢; € Cl; and we define (Dimakis, 1989):

ev(@) (W) = po¥ + g1V u.

We note that the “projected” Dirac operaléndefined in the Section 2.2 can be
written simply as

(23)

3 = en(d).

Let us now express the momentum operator in the operatorial formalism. For
column spinors, we hawe,[|y¥)] = i3,|¥). Throughp, we have for the algebraic
spinory : p,[v] =id,¢¥ = —d,¥o. Then, by applying and remembering that
o isa-even:

p.[¥] = -9, Vo. (24)

Finally, we consider the scalar product of spinorgd}fand|y,) are column
spinors, the usual spinorial part of the scalar product is define b)) =
16)Tv). Let ® andW be the operator spinors correspondingte: p—%(|0)) and
¥ = p~(¥)). Then

O1y) = HOTWP),, (25)

where the dagger operation)’( on Cl1 3 was defined in the Introductidf.
To prove (25), we first note that the trace im((4,C) is related to()o in
Cl1,3(C) by tr(p(¥)) = 4(¥)o, for expandingy = a+ a*e, + ---, we have

18t is easily seen thah! = ey A*ey for A e Cl1,3(C), but this fact was not used in this paper.
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p(¥) =al +ay, + --- = tr(p(y)) = 4a = 4y)o. Then (Bly) = tr(p(6)
p(V)) = 46T y)o = 4PTOTWP) o = 4(6TW P)o, where we substitutetl= O P,
¥ = WP (from (22)) and we used the fact thBf = P, which is easily seen by
the form of p(P) = P in (4).
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